Robust anti-sliding control of autonomous vehicles in presence of lateral disturbances

نویسندگان

  • Hao Fang
  • Lihua Dou
  • Jie Chen
  • Roland Lenain
  • Benoit Thuilot
  • Philippe Martinet
چکیده

Path following control problem of autonomous vehicles is investigated, concerning both unmeasurable sliding effects and lateral disturbances which lead to some difficulties in designing autonomous control under complex environment. To deal with the sliding effects, sideslip angles are modeled and reconstructed by estimating the tire cornering stiffness, which plays important role in analyzing the sliding effects. To this end, a Luenberger-type observer is designed, which is able to identify the tire cornering stiffness adaptively even in presence of time-varying lateral disturbances. Furthermore, to guarantee high-precision guidance, a sliding mode controller is designed based on chained system theory, and this controller is shown to be robust to both the lateral disturbances and the inaccuracy of the sliding reconstruction. Simulations illustrate that the proposed methods can reconstruct the sliding angles and provide high-accuracy anti-sliding control even in presence of the time-varying lateral disturbances. & 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

Robust Integral Sliding-Mode Control of an Aerospace Launch Vehicle

An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...

متن کامل

Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot

The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...

متن کامل

Robust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque

In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...

متن کامل

Design of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective

In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011